乳化使物质以细小的液滴悬浮在水中,但再细小,它也是大量分子的集合体,并没有均一稳定地扩散在溶剂当中
溶解就不一样了,是物质以分子或离子形式均匀扩散在水中形成的
洗涤剂中都有十二烷基磺酸钠之类的表面活性剂,这类物质之所以成为乳化剂,是因为十二烷基磺酸钠一端亲水,一端亲油。溶于水之后,亲油基伸入油分子中,亲水基伸入水分子中,形成了乳浊液,利用这个原理除去油污。
氢氧化钠等强碱除油污的原理大不一样,是利用高温下油脂在强碱溶液中的皂化反应生成羧酸钠盐和甘油的原理另外,乳化除去油污和反应除去油污都是生活中常见的例子
用汽油去油污是因为油污被汽油溶解,是物理变化.用家用 洗涤剂去油污,是因为洗涤剂有“乳化作用”,也是物理变化.由于表面活性剂的作用,使本来不能混合到一起的两种液体能够混到一起的现象称为乳化现象
乳化过程实质是将大团粒水破碎细化为微米级粒度的微团的过程。
乳化剂和乳化机的共同作用完成乳化过程。
现在采用的乳化方法有机械、化学、电磁等方法。
高剪切、超声、高压均质、射流、涡混、搅拌为机械方法;乳化剂实际为化学方法;磁化处理为电磁方法。
只有将水细化到微米级的粒度,水分子连接的氢键又与柴油分子链连接后形成相对稳定的乳化结构。
水分子微团的大小、氢键连接的离子力决定乳化结构是否稳定。
乳化剂预混和磁化处理降低了水的表面张力和氢键的离子力,使水容易破碎。
乳化机利用涡混、剪切、超声等技术手段使水微团破碎细化,也使柴油破碎细化并均混,形成乳化结构。
流体内部由于存在粘性,相互移动的流体层所产生的力称为剪切力。
由于高速运动,剪切力使流体层形成湍流,湍流使液体界面破碎。
在实际应用中胶体磨、剪切头、高压均质、射流就是高速运动形成剪切力。
有。在有机化学实验中,常常涉及到对反应产物的提纯,所以经常用到萃取这一非常有用的方法。
萃取过程中,水相提取产物中溶于水的杂质,有机相提取反应产物,达到分离提纯的作用。
实际萃取时,被提纯有机物在水相中也有少部分溶解,或溶剂分层不明显出现乳化。
此时可以加NaCl或者使用氯化钠溶液代替蒸馏水萃取,可以减少乳化以及产物在水相中得溶解度,减少损失
不溶。乳化现象不是溶解,“乳化”的前提条件就是“互不相溶”。 乳化的定义: 两种互不相溶的液体,如油与水中,若加入适当的表面活性剂在强烈搅拌下,油被分散在水中,形成乳状液,该过程叫乳化(Emulsification),乳化是液—液界面现象。由于表面活性剂的作用,使本来不能互相溶解的两种液体..
1、乳化原理在制备乳状液时,是将分散相以细小的液滴分散于连续相中,这两个互不相溶的液相所形成的乳状液是不稳定的,而通过加入少量的乳化剂则能得到稳定的乳状液。
对此,科学工作者从不同的角度提出了不同的理论解释,这些乳状液的稳定机理,对研究、生产乳状液的化妆品有着重要的理论指导意义。(1)定向楔理论 这是1929年哈金斯(Harkins)早期提出的乳状液稳定理论。他认为在界面上乳化剂的密度最大,乳化剂分子以横截面较大的一端定向的指向分散介质,即总是以“大头朝外,小头朝里”的方式在小液滴的外面形成保护膜,从几何空间结构观点来看这是合理的,从能量角度来说是复合能量最低原则的,因而形成的乳状液相对稳定。并以此可解释乳化剂为一价金属皂液及二价金属皂液时,形成稳定的乳状液的机理。乳化剂为一价金属皂在油-水界面上作定向排列时,以具有较大极性头基团伸向水相;非极性的碳氢键深入油相,这时不仅降低了界面张力,而且也形成了一层保护膜,由于一价金属皂的极性部分之横界面比非极性碳氢键的横界面大,于是横界面大的一端排在外圈,这样外相水就把内相油完全包围起来,形成稳定的O/W型的乳状液。而乳化剂为二价金属皂液时,由于非极性碳氢键的横界面比极性基团的横界面大,于是极性基团(亲水的)伸向内相,所以内相是水,而非极性碳氢键(大头)伸向外相,外相是油相,这样就形成了稳定的W/O型乳状液。这种形成乳状液的方式,乳化剂分子在界面上的排列就像木楔插入内相一样,故称为“定向楔”理论。此理论虽能定性的解释许多形成不同类型乳状液的原因,但常有不能用它解释的实例。理论上不足之处在于它只是从几何结构来考虑乳状液的稳定性,实际影响乳状液稳定的因素是多方面的。何况从几何上看,乳状液液滴的大小比乳化剂的分子要大得多,故液滴得曲表面对于其上得定向分子而言,实际近于平面,故乳化剂分子两端的大小就不是重要的,无所谓楔形插入了。(2)界面张力理论 这种理论认为界面张力是影响乳状液稳定性的一个主要因素。因为乳状液的形成必然使体系界面积大大增加,也就是对体系要做功,从而增加了体系的界面能,这就是体系不稳定的来源。因此,为了增加体系的稳定性,可减少其界面张力,使总的界面能下降。由于表面活性剂能够降低界面张力,因此是良好的乳化剂。凡能降低界面张力的添加物都有利于乳状液的形成及稳定。在研究一系列的同族脂肪酸作乳化剂的效应时也说明了这一点。随着碳链的增长,界面张力的降低逐渐增大,乳化效应也逐渐增强,形成较高稳定性的乳状液。但是,低的界面张力并不是决定乳状液稳定性的唯一因素。有些低碳醇(如戊醇)能将油-水界面张力降至很低,但却不能形成稳定的乳状液。有些大分子(如明胶)的表面活性并不高,但却是很好的乳化剂。固体粉末作为乳化剂形成相当稳定的乳状液,则是更极端的例子。因此,降低界面张力虽使乳状液易于形成,但单靠界面张力的降低还不足以保证乳状液的稳定性。总之,可以这样说,界面张力的高低主要表明了乳状液形成之难易,并非为乳状液稳定性的必然的衡量标志。(3)界面膜的稳定理论 在体系中加入乳化剂后,在降低界面张力的同时,表面活性剂必然在界面发生吸附,形成一层界面膜。界面膜对分散相液滴具有保护作用,使其在布朗运动中的相互碰撞的液滴不易聚结,而液滴的聚结(破坏稳定性)是以界面膜的破裂为前提,因此,界面膜的机械强度是决定乳状液稳定的主要因素之一。与表面吸附膜的情形相似,当乳化剂浓度较低时,界面上吸附的分子较少,界面膜的强度较差,形成的乳状液不稳定。乳化剂浓度增高至一定程度后,界面膜则由比较紧密排列的定向吸附的分子组成,这样形成的界面膜强度高,大大提高了乳状液的稳定性。大量事实说明,要有足够量的乳化剂才能有良好的乳化效果,而且,直链结构的乳化剂的乳化效果一般优于支链结构的。此结论都与高强度的界面膜是乳状液稳定的主要原因的解释相一致。如果使用适当的混合乳化剂有可能形成更致密的“界面复合膜”,甚至形成带电膜,从而增加乳状液的稳定性。如在乳状液中加入一些水溶性的乳化剂,而油溶性的乳化剂又能与它在界面上发生作用,便形成更致密的界面复合膜。由此可以看出,使用混合乳化剂,以使能形成的界面膜有较大的强度,来提高乳化效率,增加乳状液的稳定性。在实践中,经常是使用混合乳化剂的乳状液比使用单一乳化剂的更稳定,混合表面活性剂的表面活性比单一表面活性剂往往要优越得多。基于上述两段得讨论,可以得出这样得结论:降低体系得界面张力,是使乳状液体系稳定的必要条件:而形成较牢固的界面膜是乳状液稳定的充分条件。(4)电效应的稳定理论 对乳状液来说,若乳化剂是离子型的表面活性剂,则在界面上,主要由于电离还有吸附等作用,使得乳状液的液滴带有电荷,其电荷大小依电离强度而定;而对非离子表面活性剂,则主要由于吸附还有摩擦等作用,使得液滴带有电荷,其电荷大小与外相离子浓度及介电常熟和摩擦常数有关。带电的液滴靠近时,产生排斥力。使得难以聚结,因而提高了乳状液的稳定性。乳状液的带电液滴在界面的两侧构成双电层结构,双电层的排斥作用,对乳状液的稳定有很大的意义。双电层之间的排斥能取决于液滴大小及双电层厚度1/κ,还有ξ电势(或电势φ0)。当无电介质表面活性剂存在存在时,虽然界面两侧的电势差ΔV很大,但界面电位φ0却很小,所以液滴能相互靠拢而发生聚沉,这对乳状液很不利。当有电解质表面活性剂存在时,令液滴带电。O/W型的乳状液多带负电荷;而W/O型的多带正电荷。这时活性剂离子吸附在界面上并定向排列,以带电端指向水相,便将反号离子吸引过来形成扩散双电层。具有较高的φ0及较厚的双电层,而使乳状液稳定。若在上面的乳状液中加入大量的电解质盐,则由于水相中反号离子的浓度增加,一方面会压缩双电层,使其厚度变薄,另一方面他会进入表面活性剂的吸附层中,形成一层很薄的等电势层,此时,尽管电势差值不便,但是φ0减小,双电层的厚度也减薄,因而乳状液的稳定性下降。(5)固体微粒 作为乳化剂的稳定理论许多固体微粒,如碳酸钙、粘土、碳黑、石英、金属的碱式硫酸盐、金属氧化物以及硫化物等,可以作为乳化剂起到稳定乳状液的作用。显然,固体微粒只有存在于油水界面上才能起到乳化剂的作用。固体微粒是存在于油相、水相还是在它们的界面上,取决于油、水对固体微粒润湿性的相对大小,若固体微粒完全被水润湿,则在水中悬浮,微粒完全被油润湿,则在油中悬浮,只有当固体微粒既能被水、也能被油所润湿,才会停留在油水界面上,形成牢固的界面层(膜),而起到稳定作用。这种膜愈牢固,乳状液愈稳定。这种界面膜具有前述的表面活性剂吸附于界面的吸附膜类似的性质。
初中化学常见的乳化现象是用洗涤剂洗餐具.初中化学常见溶解现象有三种.一种是物质溶于水,溶液的温度降低,例如硝酸铵溶于水;第二种是物质溶于水,溶液的温度无明显变化,例如氯化钠溶于水;第三种是物质溶于水,溶液的温度升高,例如固体氢氧化钠溶于水、浓硫酸溶于水.
增溶在超过CMC的水溶液中加入的乳化剂全都形成胶束,胶束的内部是乳化剂的亲油性部分,外侧则排列着亲水基团。此时若向该体系中加入不溶于水的烃类物质,则有可能形成透明而稳定溶解的体系。这种因乳化剂胶束发生的溶解现象称为增溶作用。
某些难溶性药物在表面活性剂的作用下,在溶剂中增加溶解度并形成溶液的过程,叫增溶。具有增溶能力的表面活性剂叫增溶剂。被增溶的物质叫增溶质。
其中CMC表示临界胶束浓度即开始形成胶团时的表面活性剂的浓度。
乳化是一种液体以极微小液滴均匀地分散在互不相溶的另一种液体中的作用。乳化是液-液界面现象,两种不相溶的液体,如油与水,在容器中分成两层,密度小的油在上层,密度大的水在下层。若加入适当的表面活性剂在强烈的搅拌下,油被分散在水中,形成乳状液,该过程叫乳化。
简介
两种互不混溶的液体,一种以微粒(液滴或液晶)分散于另一种中形成的体系称为乳状液。形成乳状液时由于两种液体的界面积增大,所以这种体系在热力学上是不稳定的。为了使乳状液稳定则需加入第三种组分一乳化剂,从而降低体系的界面能。乳化剂属于一种表面活性剂,其典型功能是起乳化作用。乳状液中以液滴形成存在的那一相叫做分散相,或称为内相或不连续相;而连成一片的另一相称为分散介质,或称为外相、连续相 。
植物提取物百科 全球最大的植物提取物中文网 stephenture@qq.com
Copyright © 2020-2024 zwwiki.Cn All Rights Reserved