可以
淀粉
中糖苷键的水解
只要是足够强的酸就能催化(先把氧原子质子化,然后水分子进攻一个碳,C-O键断裂)。
弱酸催化时有不同机理:弱酸分子整体与糖苷键中的氧原子
作用
,然后水分子进攻,催化效果比强酸差。所谓“用弱酸水解
”是指淀粉
用弱酸就可水解
,强酸就更可以了。
可以在酸性条件下水解的有机物种类比较多,下面分别举例:
1、酯类。酯类在碱性条件下可以水解为羧酸和醇,在酸性条件下也可以水解,但是水解不如在碱性条件下彻底,因为碱性条件下,酯类水解产生的羧酸会被碱中和,促使反应向一侧移动。
2、糖。双糖如蔗糖、麦芽糖,酸性条件下水解为单糖。多糖如淀粉也可以逐步被水解最终变成单糖。
3、酰胺。酰胺在酸性溶液中水解,得到羧酸和铵盐。
4、蛋白质。蛋白质在酸性条件下水解可以生成分子较小的肽链直至氨基酸。
可以的。豆饼酸再怎么高也不可能高过胃酸吧。
豆饼喂羊,四忌!
一忌:用量过多。豆饼是畜禽的优质蛋白饲料,但用量不要过多,在奶牛的日粮中,一般每天可喂到4千克。
二忌:单独使用。豆饼含有畜禽所必需蛋氨酸,一般为0.5%~0.7%。尽管豆饼粗蛋白的品质较好,也不应单独使用。由于豆饼中还缺少维生素D与胡萝卜素,铁、钙、磷的含量也不丰富,所以用豆饼饲喂各种畜禽都应注意维生素AD与钙、磷等营养成分的补充。
三忌:生喂。豆粕中含有一些有害物质,如抗胰蛋白酶、血球凝集素、皂角苷等。这些物质大都不耐热,因此一定要熟喂才能提高其营养价值。
四忌:发霉变质。由于豆饼中含脂肪较多,易发霉变质。因此豆饼应贮存在干燥、通风、避光的地方,以防酸败。同时要防止霉菌的繁殖,避免有害物质(如黄曲霉毒素)对畜禽的毒害,已发生霉变的不能饲喂,以防中毒。
盐酸的密度一般是1.18 g/cm³
盐酸的生活用途
1、生物用途
人类和其他动物的胃壁上有一种特殊的腺体,能把吃下去的食盐变成盐酸。盐酸是胃液的一种成分(浓度约为0.5%),它能使胃液保持激活胃蛋白酶所需要的最适合的pH值,它还能使食盐中的蛋白质变性而易于水解,以及杀死随食物进入胃里的细菌的作用。
此外,盐酸进入小肠后,可促进胰液、肠液的分泌以及胆汁的分泌和排放,酸性环境还有助于小肠内铁和钙的吸收。
2、日常用途
利用盐酸可以与难溶性碱反应的性质,制取洁厕灵、除锈剂等日用品。
一、主要途径
1. 蛋白质代谢以氨基酸为核心,细胞内外液中所有游离氨基酸称为游离氨基酸库,其含量不足氨基酸总量的1%,却可反映机体氮代谢的概况。食物中的蛋白都要降解为氨基酸才能被机体利用,体内蛋白也要先分解为氨基酸才能继续氧化分解或转化。
2. 游离氨基酸可合成自身蛋白,可氧化分解放出能量,可转化为糖类或脂类,也可合成其他生物活性物质。合成蛋白是主要用途,约占75%,而蛋白质提供的能量约占人体所需总能量的10-15%。蛋白质的代谢平衡称氮平衡,一般每天排出5克氮,相当于30克蛋白质。
3. 氨基酸通过特殊代谢可合成体内重要的含氮化合物,如神经递质、嘌呤、嘧啶、磷脂、卟啉、辅酶等。磷脂的合成需S-腺苷甲硫氨酸,氨基酸脱羧产生的胺类常有特殊作用,如5-羟色胺是神经递质,缺少则易发生抑郁、自杀;组胺与过敏反应有密切联系。
二、消化
外源蛋白有抗原性,需降解为氨基酸才能被吸收利用。只有婴儿可直接吸收乳汁中的抗体。可分为以下两步:
1. 胃中的消化:胃分泌的盐酸可使蛋白变性,容易消化,还可激活胃蛋白酶,保持其最适pH,并能杀菌。胃蛋白酶可自催化激活,分解蛋白产生蛋白胨。胃的消化作用很重要,但不是必须的,胃全切除的人仍可消化蛋白。
2. 肠是消化的主要场所。肠分泌的碳酸氢根可中和胃酸,为胰蛋白酶、糜蛋白酶、弹性蛋白酶、羧肽酶、氨肽酶等提供合适环境。肠激酶激活胰蛋白酶,再激活其他酶,所以胰蛋白酶起核心作用,胰液中有抑制其活性的小肽,防止在细胞中或导管中过早激活。外源蛋白在肠道分解为氨基酸和小肽,经特异的氨基酸、小肽转运系统进入肠上皮细胞,小肽再被氨肽酶、羧肽酶和二肽酶彻底水解,进入血液。所以饭后门静脉中只有氨基酸。
三、内源蛋白的降解
1. 内源蛋白降解速度不同,一般代谢中关键酶半衰期短,如多胺合成的限速酶-鸟氨酸脱羧酶半衰期只有11分钟,而血浆蛋白约为10天,胶原为1000天。体重70千克的成人每天约有400克蛋白更新,进入游离氨基酸库。
2. 内源蛋白主要在溶酶体降解,少量随消化液进入消化道降解,某些细胞器也有蛋白酶活性。内源蛋白是选择性降解,半衰期与其组成和结构有关。有人认为N-末端组成对半衰期有重要影响(N-末端规则),也有人提出半衰期短的蛋白都含有一个富含脯氨酸、谷氨酸、丝氨酸和苏氨酸的区域(PEST区域)。如研究清楚,就可能得到稳定的蛋白质产品。
四、氨基酸的吸收
食用蛋白质后15分钟就有氨基酸进入血液,30到50分钟达到最大。氨基酸的吸收与葡萄糖类似,有以下方式:
1. 需要载体的主动转运,需要钠,消耗离子梯度的势能。已发现6种载体,运载不同侧链种类的氨基酸。
2. 基团转运,需要谷胱甘肽,每转运一个氨基酸消耗3个ATP,而用载体转运只需三分之一个。此途径为备用的旁路,一般无用。
在"观察DNA和RNA的分布实验"中,用质量分数为8%的盐酸水解的目的是改变细胞膜的通透性;同时使染色体中的DNA和蛋白质分离,有利于DNA与染色剂的结合。
水解反应中有机化学概念是水与另一化合物反应,该化合物分解为两部分,水中的H+加到其中的一部分,而羟基(-OH)加到另一部分,因而得到两种或两种以上新的化合物的反应过程;无机化学概念是弱酸根或弱碱离子与水反应,生成弱酸和氢氧根离子(OH-)(或者弱碱和氢离子(H+))。工业上应用较多的是有机物的水解,主要生产醇和酚。水解反应是中和或酯化反应的逆反应。大多数有机化合物的水解,仅用水是很难顺利进行的,一般在碱性或酸性条件下。 有机水解反应:有机物的分子一般都比较大,水解时需要酸或碱作为催化剂,有时也用生物活性酶作为催化剂。
①在酸性水溶液中,脂肪会水解成甘油和脂肪酸;淀粉会水解成麦芽糖、葡萄糖等;蛋白质会水解成氨基酸等分子量比较小的物质。
②在碱性水溶液中,脂肪会分解成甘油和固体脂肪酸盐,即肥皂,因此这种水解也叫作皂化反应。 工业上应用较多的是有机物的水解,主要生产醇和酚。水解反应是中和或酯化反应的逆反应。大多数有机化合物的水解,仅用水是很难顺利进行的。根据被水解物的性质水解剂可以用氢氧化钠水溶液、稀酸或浓酸,有时还可用氢氧化钾、氢氧化钙、亚硫酸氢钠等的水溶液。这就是所谓的加碱水解和加酸水解。水解可以采用间歇或连续式操作,前者常在釜式反应器中进行,后者则多用塔式反应器。
蛋白质水解方程式:
H-[-NH2CH2CO-]n-OH + nH2O= nNH2CH2COOH
蛋白质在酸、碱或酶的作用下发生水解反应,经过多肽,最后得到多种α-氨基酸。蛋白质水解时,应找准结构中键的“断裂点”,水解时肽键部分或全部断裂。
盐酸不会水解,水和盐酸反应式是:
HCl + H2O = H3O+ + Cl -
水解反应中在有机化学概念是指水与另一化合物反应,该化合物分解为两部分,水中的H+加到其中的一部分,而羟基(-OH)加到另一部分,因而得到两种或两种以上新的化合物的反应过程;
无机化学概念是弱酸根或弱碱离子与水反应,生成弱酸和氢氧根离子(OH-)(或者弱碱和氢离子(H+))。
肽键水解的条件是在酸碱,条件下脱水缩合形成,在酸碱酶条件下水解。 肽键作为天然肽和蛋白的骨干普遍存在。氨基酸借肽键联结成蛋白质,肽键如同关节一样构建了蛋白质的骨架。 同时肽键也广泛存在于很多药物小分子中,例如人们常用的消炎药青霉素和阿莫西林。
化学家们常用的生成肽键方法是羧酸和胺的脱水缩合反应。其中羧酸为亲电试剂,胺为亲核试剂。
而在《自然》新报道的这一方法中,作者发现可以使用溴化硝基烷烃作为羧酸的替代物,与碘活化的胺反应。
反应物的极性与经典的脱水缩合反应相反(umpolung)。
溴化硝基烷烃的使用提供了生成肽键的一种全新的理念。
当反应分子体积增大、位阻或立体化学复杂程度增强的时候,常用的脱水缩合反应有时就难以达到要求。
比如芳香基甘氨酸的肽键生成中就常会伴随一定程度的消旋(导致纯度降低)。
而新报道的这一方法可以和不对称的aza-Henry反应连用,成功避免了芳香基甘氨酸的酰胺产生过程中的消旋。
天然蛋白质水解最终产物是α-氨基酸. 天然α-氨基酸有20种.它们是: 1.甘氨酸 2.丙氨酸 3.丝氨酸 4.半胱氨酸 5.苏氨酸 6.缬氨酸 7.亮氨酸 8.异亮氨酸 9.蛋氨酸 10.苯丙氨酸 11.色氨酸 12.酪氨酸 13.天冬氨酸 14.天冬酰胺 15.谷氨酸 16.谷氨酰胺 17.赖氨酸(两种赖氨酸) 18.精氨酸 19.组氨酸
植物提取物百科 全球最大的植物提取物中文网 stephenture@qq.com
Copyright © 2020-2024 zwwiki.Cn All Rights Reserved