晚上好,植物提取物百科网!

交互作用检验(交互作用检验p值)

更新时间: 2024-09-28 01:11:45 责编:网友投稿 浏览

 交互作用检验(交互作用检验p值)

交互作用检验p值

1,T检验和F检验的由来

一般而言,为了确定从样本(sample)统计结果推论至总体时所犯错的概率,我们会利用统计学家所开发的一些统计方法,进行统计检定。

通过把所得到的统计检定值,与统计学家建立了一些随机变量的概率分布(probability distribution)进行比较,我们可以知道在多少%的机会下会得到目前的结果。倘若经比较后发现,出现这结果的机率很少,亦即是说,是在机会很 少、很罕有的情况下才出现;那我们便可以有信心的说,这不是巧合,是具有统计学上的意义的(用统计学的话讲,就是能够拒绝虚无假设null hypothesis,Ho)。相反,若比较后发现,出现的机率很高,并不罕见;那我们便不能很有信心的直指这不是巧合,也许是巧合,也许不是,但我们没 能确定。

F值和t值就是这些统计检定值,与它们相对应的概率分布,就是F分布和t分布。统计显著性(sig)就是出现目前样本这结果的机率。

2,统计学意义(P值或sig值)

结果的统计学意义是结果真实程度(能够代表总体)的一种估计方法。专业上,p值为结果可信程度的一个递减指标,p值越大,我们越不能认为样本中变量的关联 是总体中各变量关联的可靠指标。p值是将观察结果认为有效即具有总体代表性的犯错概率。如p=0.05提示样本中变量关联有5%的可能是由于偶然性造成 的。即假设总体中任意变量间均无关联,我们重复类似实验,会发现约20个实验中有一个实验,我们所研究的变量关联将等于或强于我们的实验结果。(这并不是 说如果变量间存在关联,我们可得到5%或95%次数的相同结果,当总体中的变量存在关联,重复研究和发现关联的可能性与设计的统计学效力有关。)在许多研 究领域,0.05的p值通常被认为是可接受错误的边界水平。

3,T检验和F检验

至於具体要检定的内容,须看你是在做哪一个统计程序。

举一个例子,比如,你要检验两独立样本均数差异是否能推论至总体,而行的t检验。

两样本(如某班男生和女生)某变量(如身高)的均数并不相同,但这差别是否能推论至总体,代表总体的情况也是存在著差异呢?

会不会总体中男女生根本没有差别,只不过是你那麼巧抽到这2样本的数值不同?

为此,我们进行t检定,算出一个t检定值。

与统计学家建立的以「总体中没差别」作基础的随机变量t分布进行比较,看看在多少%的机会(亦即显著性sig值)下会得到目前的结果。

若显著性sig值很少,比如<0.05(少於5%机率),亦即是说,「如果」总体「真的」没有差别,那麼就只有在机会很少(5%)、很罕有的情况 下,才会出现目前这样本的情况。虽然还是有5%机会出错(1-0.05=5%),但我们还是可以「比较有信心」的说:目前样本中这情况(男女生出现差异的 情况)不是巧合,是具统计学意义的,「总体中男女生不存差异」的虚无假设应予拒绝,简言之,总体应该存在著差异。

每一种统计方法的检定的内容都不相同,同样是t-检定,可能是上述的检定总体中是否存在差异,也同能是检定总体中的单一值是否等於0或者等於某一个数值。

至於F-检定,方差分析(或译变异数分析,Analysis of Variance),它的原理大致也是上面说的,但它是透过检视变量的方差而进行的。它主要用于:均数差别的显著性检验、分离各有关因素并估计其对总变异 的作用、分析因素间的交互作用、方差齐性(Equality of Variances)检验等情况。

3,T检验和F检验的关系

t检验过程,是对两样本均数(mean)差别的显著性进行检验。惟t检验须知道两个总体的方差(Variances)是否相等;t检验值的计算会因 方差是否相等而有所不同。也就是说,t检验须视乎方差齐性(Equality of Variances)结果。所以,SPSS在进行t-test for Equality of Means的同时,也要做Levene's Test for Equality of Variances 。

1.

在Levene's Test for Equality of Variances一栏中 F值为2.36, Sig.为.128,表示方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故下面t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。

2.

在t-test for Equality of Means中,第一排(Variances=Equal)的情况:t=8.892, df=84, 2-Tail Sig=.000, Mean Difference=22.99

既然Sig=.000,亦即,两样本均数差别有显著性意义!

3.

到底看哪个Levene's Test for Equality of Variances一栏中sig,还是看t-test for Equality of Means中那个Sig. (2-tailed)啊?

答案是:两个都要看。

先看Levene's Test for Equality of Variances,如果方差齐性检验「没有显著差异」,即两方差齐(Equal Variances),故接著的t检验的结果表中要看第一排的数据,亦即方差齐的情况下的t检验的结果。

反之,如果方差齐性检验「有显著差异」,即两方差不齐(Unequal Variances),故接著的t检验的结果表中要看第二排的数据,亦即方差不齐的情况下的t检验的结果。

4.

你做的是T检验,为什么会有F值呢?

就是因为要评估两个总体的方差(Variances)是否相等,要做Levene's Test for Equality of Variances,要检验方差,故所以就有F值。

另一种解释:

t检验有单样本t检验,配对t检验和两样本t检验。

单样本t检验:是用样本均数代表的未知总体均数和已知总体均数进行比较,来观察此组样本与总体的差异性。

配对t检验:是采用配对设计方法观察以下几种情形,1,两个同质受试对象分别接受两种不同的处理;2,同一受试对象接受两种不同的处理;3,同一受试对象处理前后。

F检验又叫方差齐性检验。在两样本t检验中要用到F检验。

从两研究总体中随机抽取样本,要对这两个样本进行比较的时候,首先要判断两总体方差是否相同,即方差齐性。若两总体方差相等,则直接用t检验,若不等,可采用t'检验或变量变换或秩和检验等方法。

其中要判断两总体方差是否相等,就可以用F检验。

若是单组设计,必须给出一个标准值或总体均值,同时,提供一组定量的观测结果,应用t检验的前提条件就是该组资料必须服从正态分布;若是配对设计, 每对数据的差值必须服从正态分布;若是成组设计,个体之间相互独立,两组资料均取自正态分布的总体,并满足方差齐性。之所以需要这些前提条件,是因为必须 在这样的前提下所计算出的t统计量才服从t分布,而t检验正是以t分布作为其理论依据的检验方法。

简单来说就是实用T检验是有条件的,其中之一就是要符合方差齐次性,这点需要F检验来验证。

交互作用怎么检验

SPSS中交互作用显著时,才能够进行简单效应检验。

比如你说的道德性因子在年级和性别上交互作用显著时,你才能以道德性因子为因变量,A年级(1、2、3)和B性别(1、2)作为自变量进行简单效应检验。

其中开始你用年级A1水平上,B1和B2是否有显著性差异(A1B1、A1B2),然后A2B1、A2B2;A3B1、A3B2三个进行简单效应检验。最后判断到底是谁起主要影响。

你说所得简单效应必须是存在交互作用的情况下才能进行,不然是不能进行简单效应。因为可以用自变量的主效应解释因变量的变异情况就OK。

所以你只要看是性别对道德性因子影响大还是年级影响大。其他用主效应解释就OK,不显著的不用解释。 不知道你是否明白,可以继续和我交流。

交互作用p值大于0.05

f值看显著性:

f值也是透过检视变量的方差来进行的,它主要用于:均数差别的显著性检验、分离各有关因素并估计其对总变异的作用、分析因素间的交互作用、方差齐性(Equality of Variances)检验等情况

而且大于临界F值的,认为在统计学上有差异的(即:P < (1-对应临界值所对应的曲线下面积),f值检定,方差分析(或译变异数分析,Analysis of Variance)。

p值看显著性:

P值指的是比较的两者的差别是由机遇所致的可能性大小。P值越小,越有理由认为对比事物间存在差异。例如,P<0.05,就是说结果显示的差别是由机遇所致的可能性不足5%,或者说,别人在同样的条件下重复同样的研究,得出相反结论的可能性不足5%。P>0.05称“不显著”;P<=0.05称“显著”,P<=0.01称“非常显著”

交互检验P值

假设现在我们做了如下的回归方程:

如果要用怀特检验检验上述方程有没有异方差,主要分以下几个步骤:

1.step1:

对方程进行普通的ols估计,可以得到方程的残差ui。

2.step2:

以第一步估计估计出来的残差作为y,构造如下方程:

上面构造的方程看起来比较复杂,但主要是由三部分组成:原方程的解释变量、解释变量的平方、解释变量之间的交互项。

方程构造好以后对方程进行估计求解。

3.step3:

再回想一下什么是异方差,就是残差项与某一个或某一些x之间有相关性是不是。

那如果step2中的方程中每一个系数都为0,是不是说明残差与任意x都是无关的,我们把这个称为原假设;反之,只要有一个系数不为0,就说明残差与x有关,也就是存在异方差,我们把这个称为备择假设。

在原假设成立的情况下,可以得知step2中方程的R^2乘以样本容量n服从自由度等于step2回归方程中的变量数的卡方分布。

在服从卡方分布的前提下就可以根据与卡方分布的临界值来比较来判断原假设是否成立。

4.step4:

如果计算出来的nR^2显著高于选定显著性水平(p_value值)的卡方临界值,则需要拒绝原假设,也就是方程存在异方差。

如果存在异方差时,还可以查看step2方程的估计结果中每个变量的显著性情况,进而确定是哪个变量引起的异方差。

需要注意的是,如果模型中包含多个变量时,此时引进多个变量的交互项会大大降低方程的自由度,所以看情况可以选择不加。

当然,以上过程也不需要我们自己去实现,Python也是有现成的包可以调用:

利用p值进行检验

P值检验比统计量检验提供了更多的信息。

P值给出的是根据实际统计量算出的显著性水平,告诉我们实际的显著性水平是多少。根据统计量检验,如果拒绝原假设,也仅仅是知道犯错误的可能性是α那么大,但究竟是多少却不知道,而P值则是算出的犯第一类错误的实际概率。

交互作用显著性检验

t检验是比较两组数据之间的差异,有无统计学意义; t检验的前提是,两组数据来自正态分布的群体,数据的方差齐,满足独立性。

独立样本t检验(各实验处理组之间毫无相关存在,即为独立样本),该检验用于检验两组非相关样本被试所获得的数据的差异性。

S1²和 S2²为两样本方差;n₁ 和n₂ 为两样本容量。

扩展资料:

选用的检验方法必须符合其适用条件。理论上,即使样本量很小时,也可以进行t检验。(如样本量为10,一些学者声称甚至更小的样本也行),只要每组中变量呈正态分布,两组方差不会明显不同。如上所述,可以通过观察数据的分布或进行正态性检验估计数据的正态假设。

方差齐性的假设可进行F检验,或进行更有效的Levene's检验。如果不满足这些条件,可以采用校正的t检验,或者换用非参数检验代替t检验进行两组间均值的比较。

交互作用p值的概念

重复测量数据的分析思路,采用重测测量方差分析的方法进行主效应,时间效应和交互效应的研究,获取组间整体、时点间整体,交互作用的3对F,P,再整体解释一下。

如果交互效应显著,则分析不同时间点组间差异,组内不同时间点差异即可。组间单因素方差分析,组内配对t检验矫正a水平。

什么是交互p值

交互作用(interaction)是指一个因素各个水平之间反应量的差异随其他因素的不同水平而发生变化的现象。它的存在说明同时研究的若干因素的效应非独立。交互作用的效应可度量一个因素不同水平的效应变化依赖于另一个或几个因素的水平

概念

交互作用(interaction),在心理学中的解释为,当实验研究中存在两个或两个以上自变量时,其中一个自变量的效果在另一个自变量每一水平上表现不一致的现象。某一因素的真实效应随着另一因素的改变而改变。

注意事项

当交互作用存在时,单纯研究某个因素的作用没有意义,必须分别探讨另一个因素不同水平上该因素的作用模式。若所有实验设计的单元格内都只有一个影响因素时,则无法衡量自变量之间的交互作用。

研究方法

当存在交互作用时,单纯研究某个因素的作用是没有意义的,必须分另一个因素的不同水平研究该因素的作用大小。

如果所有单元格内都至多有一个元素,则交互作用无法测量,只能不予考虑,最典型的例子就是配伍设计的方差分析。

实验设计方法中交互作用表示当两种或几种因素水平同时作用时的效果较单一水平因素作用的效果加强或者减弱的作用。

交互作用是研究中必须考虑的因素。正交试验设计中,有专门的列指标表达交互作用。

表示方法:A×B、A×B×C等

计算方法:分手动计算和计算机软件计算,如SPSS。

结果显示:

对照组试验前后收缩压的变化,p=0.522,无显著差异,说明时间因素并不是造成收缩压变化的因素;

嗜盐变化导致的收缩压变异与试验前后(时间因素)导致的血压变异,p=0.254,说明嗜盐变化不是导致试验前后血压变异的因素,或者说,试验前后出现的收缩压变异不是导致嗜盐变化的因素。具体如何解释以研究所关注的指标为准,本例是考察试验前后收缩压变异,故以前一种解释为准。

考察试验前后嗜盐变化,p>0.05,及试验前后嗜盐情况无显著性变化,说明嗜盐情况,在试验前后,未发生改变,没有影响到收缩压的变化。

交互p值大说明没有差异

dp是长度单位。设备独立像素的意思

dp是一种物理测量单位,基于计算机控制的坐标系统和抽象像素(虚拟像素),由底层系统的程序使用,转换为物理像素的应用。

用途是允许移动设备软件将信息显示和用户交互扩展到不同的屏幕尺寸。允许应用程序以抽象像素为单位进行测量,而底层图形系统将应用程序的抽象像素测量值转换为适合于特定设备的物理像素。

关注我们

微信

网站也是有底线的

植物提取物百科 全球最大的植物提取物中文网 stephenture@qq.com

Copyright © 2020-2024 zwwiki.Cn All Rights Reserved