晚上好,植物提取物百科网!

凯氏带的作用(什么是凯氏带)

更新时间: 2024-09-28 01:20:42 责编:网友投稿 浏览

 凯氏带的作用(什么是凯氏带)

什么是凯氏带

Fe 如何从土壤转运到根系? 植物摄取铁的方式,可以根据对铁离子的不同吸收形式划分为策略一(strategyⅠ)和策略二(strategy Ⅱ)。双子叶植物和非禾本科单子叶植物主要利用策略一从土壤中吸收

2.Fe 如何从根系转运到地上? 摄取到根表皮细胞中后,Fe通过共质体途径和质外体途径转运。内皮层木栓化的凯氏带形成了水和溶

3.Fe 转运并储存到种子 铁离子复合物通常被还原成亚铁,用于跨细胞或细胞内

什么是凯氏带有什么功能

内皮层细胞壁主要有凯氏带和木栓层两种形式。

内皮层(endodermis):位于根部维管束外围,系单层细胞构成。是皮层最内一层排列紧密、整齐的细胞;其细胞的左右径向壁和上下横壁有局部栓质化的带状加厚,称凯氏带。一些没有次生生长的植物,在生长后期,其内皮层的细胞壁在凯氏带基础上,还在内切向壁或内外切向壁上进行栓质增厚,形成“U”型五面加厚或“O”全面加厚。

由于凯氏带的存在,从根毛吸收的无机液流在内皮层区域,只被允许以共质体途径,而不允许以质外体途径的运输方式将无机液流运入中柱,因此,凯氏带对根内无机液流的吸收和运输具有定向控制作用。

什么是凯氏带?它有几个面的壁不带状增厚?

双子叶植物根的初生结构:由表皮、皮层和维管柱三部分组成;成熟区表皮具根毛,皮层有外皮层和内皮层,维管柱有中柱鞘;内皮层不是停留在凯氏带阶段,而是继续发展,成为五面增厚。(木质化和栓质化),仅少数位于木质部脊处

什么是凯氏带、它的功能是什么?

内皮层(endodermis):位于根部维管束外围,系单层细胞构成。是皮层最内一层排列紧密、整齐的细胞;其细胞的左右径向壁和上下横壁有局部栓质化的带状加厚,称凯氏带。

一些没有次生生长的植物,在生长后期,其内皮层的细胞壁在凯氏带基础上,还在内切向壁或内外切向壁上进行栓质增厚,形成“U”型五面加厚或“O”全面加厚。

什么是凯氏带和凯氏点

内皮层凯氏带是植物根中水分和离子径向运输的屏障。由于内皮层凯氏带的精细结构及化学性质等方面的研究难度较大,因此多年来进展缓慢。

随着显微技术和鉴定方法的不断改进,对凯氏带的结构和功能的研究得以深入,但对其发育、化学成分及与抗盐胁迫的关系方面的报道还不多见。本文就凯氏带的结构发育、化学组成以及其在抗盐胁迫中的作用进行了综述,以期为内皮层凯氏带功能的进一步研究提供新的思路。

凯氏带的含义

根和茎的初生构造均可从各自的成熟区横切面上观察到,双子叶植物根、茎初生结构的异同主要是:

(1)相同之处:均由表皮、皮层、维管柱三部分组成,各部分的细胞类型在根、茎中也基本相同+根、茎中初生韧皮部发育顺序均为外始式.

(2)不同之处:a.根表皮具根毛、无气孔,茎表皮无根毛而往往具气孔。

b.根中有内皮层,内皮层细胞具凯氏带,维管柱有中柱鞘;而大多数双子叶植物茎中无显著的内皮层,更谈不上具凯氏带,茎维管柱也无中柱鞘。

c。根中初生木质部和初生韧皮都相间排列,各自成束,而茎中初生木质部与初生韧皮部内外并列排列,共同组成束状结构。

d.根初生木质部发育顺序是外始式,而茎中初生木质部发育顺序是内始式。

e.根中无髓射线,有些双子叶植物根无髓,茎中央为髓,维管束间具髓射线。 根与茎的这些差异是由二者所执行的功能和所处的环境条件不同决定的。

凯氏带的概念

凯氏带的定义:内皮层细胞的上,下壁和径向壁上,常有木质化和栓质化的加厚,呈带状环绕细胞一周,称凯氏带。

在横切面上,凯氏带在相邻的径向壁上呈点状,称凯氏点。

凯氏带由什么组成

凯氏带是高等植物内皮层细胞径向壁和横向壁的木栓化和木质化的带状增厚部分,主要功能是阻止水份向组织渗透,控制着皮层和维管柱之间的物质运输.凯氏带是木质和栓质沉积在初生壁和胞间层中,并与质膜结合紧密的一条环带,质壁分离的细胞中,质膜紧贴着凯氏带区,只有这个区以外的质膜才分离开.最初由德国植物学家凯斯伯里于1865年发现,其名字的由来即在于此.凯氏带见于初生根的内皮层,而在茎、叶等气生器官中是否存在则仍有争议.

什么是凯氏带加厚

树从上到下主要分为四部份:树叶、树枝、树干、树根。

叶是高等植物的营养器官,侧边发育自植物的茎的叶原基。叶内含有叶绿体,是植物进行光合作用的主要器官。同时,植物的蒸腾作用也是通过叶的气孔实现的。

叶只出现在真正的茎上,即只有维管植物才有叶。苔藓植物,蕨类和所有高等植物都有叶。相对地,藻类,真菌和地衣则没有叶。在这些扁平体(Thallus)中只能找到与叶相似的结构,但只能作为类似物(Analoga)。

但有人认为,上述的叶的外延,只是狭义的。广义的叶应该指所有能行光合作用的组织结构。一部分的茎,如仙人掌,则会属于此种广义的叶。

完全叶包含三部分,叶片,叶柄和托叶。叶片指的是完全叶上扁平的主体结构。它会尽可能地吸收阳光,并通过气孔调节植物体内水分和温度。在叶片的纵切面可见三种主要结构:上下表皮,栅栏组织和海绵组织。

根是植物的营养器官,通常位于地表下面,负责吸收土壤里面的水分及溶解其中的离子,并且具有支持,贮存合成有机物质的作用。当然,位于地表外的气生根(榕树)也属于根的一种。

根的纵切面

根的纵切面可分为四个区,最顶端的是帽状结构--根冠,以上是分生区和伸长区,再上则是带根毛的根毛区。

根管位于根顶端分生组织的外面。外层细胞壁的高度粘液化可以减少根在往下生长过程中与土壤接触的摩擦力,起到保护作用。同时细胞中的造粉体还可保证根的向地生长,即保证其向地性(Gravitropism)。

分生区与根冠接壤处有一分生组织区,不断产生细胞补充根冠的磨损。上方是静止中心,细胞分裂活动停止,其作用是感受重力,控制细胞分裂,使根保持竖直向下生长。而在其纵切面上可划分三种分生组织,即表皮原,皮层原和中柱原。它们分裂分化后分别形成根部的表皮层,皮质和中柱。

伸长区的细胞由分生区细胞发展而来,分裂能力已减弱,细胞延长轴伸长。伸长活动会导致原生韧皮部和初生木质部损坏,使之出现缺层(Lacuna)。

根毛去细胞已是成熟的细胞。根毛由表皮中的毛细胞(Trichoblast)生成,可有效地增大植物根部的吸收区域。树木根部的吸收面积可达400M²。

根的横切面

可分为三种结构,由外往内分别为表皮(又称根被皮),皮质和中柱。

最外围的是保护组织--根被皮(Rhizodermis)。而在老根中,根被皮通常会脱落。这时则有次生保护组织木栓行使保护功能。

往内是皮质,皮质又可以分为外皮,薄壁组织和内皮。

内皮细胞之间有加厚,称为凯氏带。外界的水分可以很容易的通过自由空间(即质外体)扩散穿过表皮和皮质,但不能自由穿过凯氏带。因此凯氏带起到调节水分吸收的作用。同时在根压的形成中,凯氏带也是一个重要角色。在内皮细胞当中,在原生木质部脊半径方向上,存在着通道细胞。它们壁薄,对水分具有通透性,使得水分能快速进入木质部。

皮质包绕中央柱。中央柱有中柱鞘,木质部,韧皮部,薄壁组织或厚壁组织。根的维管组织与茎不一样。茎的维管束木质部韧皮部呈束状排列在同一半径上。而在根部,两者以同心圆的方式相间排列。木质部韧皮部相间排列,外抵中柱鞘。而此两者都来源于中柱鞘。这种由外向内发生方式被称为外始式,这也有别于茎内木质部外始式而韧皮部内始式的发生。

而在双子叶和单子叶植物的排列又有所区别。

中柱鞘是初生分生组织。它是侧根,木栓的发源。同时,根的次级生长,主要是维管束的次级生长,也是中柱鞘运动的结果。

在双子叶植物中,木质部成星芒状,各个木质部射线在根中央相交,形成实心的中央。而韧皮部位于两束木质部之间,中间又少量薄壁细胞填充。

在单子叶植物中,中柱的中心常由薄壁组织(玉米)或厚壁组织(铃兰)填充,被称为髓。根据木质部形成的脊的数目,可以把植物分为二原,三原,四原,五原和超过五个以上的多原。单子叶植物统书比双子叶植物有更多的脊(14左右)。

根与茎的横切面很相似,区别是在茎内,在木质部之前分布有木射线。

根的生长

根的生长分为初级生长(primary growth)和次生生长(secondary growth)。

初生生长

根的初生生长根来源于胚胎的胚根。种子萌发的时候,幼根向下生长,这是根顶端分生组织活动的结果。顶端分生组织一方面向下分化根冠组织,替换被磨损的根冠部分。另一方面向上分化细胞,中柱原,皮质原和表皮原将会分生出中柱(包括中柱鞘,维管束和填充的薄壁组织。中柱鞘是顶端分生组织分裂出来的,具有分生能力的组织。维管组织和薄壁组织则是被分化出来的具有特定功能的组织),皮质和根表皮。这就是根的初生生长。

次生生长

根的次生生长后来,根的维管形成层活动,向内不断产生次生木质部,向外分化出次生韧皮部,并不断把韧皮部的相对位置往外推。两者此时的关系已不是相间排列。而是初生韧质部在最外,之后是后分化的次生韧皮部,中间间以维管形成层,再往内接次生木质部,此三者成束状。束内有次生射线。而初生木质部则不在这个束状结构里,而是与之在根的横切面上呈同心圆相间排列。维管形成层的活动使得根的直径不断增大。而表皮部分木栓开始形成,形成更厚的木质化的保护组织替换原来衰老的表皮。这就是根的次级生长。

侧根

侧根是由中柱鞘细胞发生而来的。在侧根发生的部位,中柱鞘细胞突破皮层细胞向外生长,侧根顶端有顶端分生组织。根据主根与侧根的关系,可将植物的根划分为直根系和须根系两大根系。

根系

根系一株植物全部根的总称。胚胎的胚根形成的根是植物的主根。后来当植物发育到一定阶段,中柱的中柱鞘活动产生侧根。按其形态,可分为直根系(allorhizie)和须根系(homorhizie)。 植物的生存环境,如土壤情况和水分分步,和气候状况,如湿度和温度,影响着根系的形态。一般来说,直根系的深入土壤的深度大于须根系。一般木本植物的根深达10-12米。而生活在沙漠地区的骆驼刺可深入地下20米,以吸收地下水。单子叶植物,如禾本科的植物,其须根入土只有20-30厘米。论伸展的直径,本科植物可达10-18米,超过其树冠直径。禾本科植物只有40-60厘米。木本科植物的根吸收面积可达400平方米。

直根系

直根系存在于双子叶植物中,特点是主根明显而发达,并且方向为竖直向下,侧根呈葡萄状分布于主根周围。

须根系

存在于蕨类和单子叶植物中,主根生长到一定阶段后即停止生长,因此主根不明显。茎基部产生大量的不定根,这些不定根不断长长。所有的根呈须状分布。

不定根

不定根指的是由植物其它营养器官长出来的根,如茎和叶就可以长出假根。

假根

较原始的陆生植物(如苔藓)没有维管组织,只有由单细胞或多细胞组成的假根,用以吸收水分和固定植物体。

菌根

菌根指的是高等植物与真菌类生物的共生现象,发生于植物的根部。可分为两类:内生菌根和外生菌根。

内生菌根

微生物通过根毛到表皮皮层间隙,在皮层中繁殖,皮层细胞受刺激而分裂。真菌菌丝起到根毛的作用,吸收土壤中水分,矿物质和有机物质,并将之分解成更有利于宿主吸收的形式。真菌还能合成维生素供给宿主。而宿主则会提供胺基酸等物质供应真菌。

外生菌根

真菌在植物根部外形成以鞘层,成为菌丝罩,菌丝外露。只有少部分的真菌进入到根的皮层。

关注我们

微信

网站也是有底线的

植物提取物百科 全球最大的植物提取物中文网 stephenture@qq.com

Copyright © 2020-2024 zwwiki.Cn All Rights Reserved