转录的作用(转录作用的机理)
转录作用的机理
转录时,细胞通过碱基互补的原则来生成一条带有互补碱基的mRNA,通过它携带密码子到核糖体中可以实现蛋白质的合成。
与DNA的复制相比,转录有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取并复制为mRNA。就是说,以特定的DNA片段作为模板,以DNA依赖的RNA合成酶作为催化剂,合成前体mRNA。
在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物,在反转录病毒感染中也起到重要作用。
关于转录作用的叙述正确的是
转录是蛋白质生物合成的第一步,也是tRNA和rRNA的合成步骤。转录 (transcription)是以DNA中的一条单链为模板,游离碱基为原料,在DNA依赖的RNA聚合酶催化下合成RNA链的过程。与DNA的复制相比,有很多相同或相似之处,亦有其自己的特点。转录中,一个基因会被读取被复制为mRNA,就是说一特定的DNA片断作为模板,以DNA依赖的RNA合成酶作为催化剂的合成前体mRNA。在体内,转录是基因表达的第一阶段,并且是基因调节的主要阶段。转录可产生DNA复制的引物。在反转录病毒感染中也起到重要作用。转录仅以DNA的一条链作为模板。DNA上的转录区域称为转录单位(transcription unit)。RNA聚合酶合成RNA时不需引物,但无校正功能。
逆转录reverse transcription:也称反转录以RNA为模板合成DNA的过程,是RNA病毒的复制形式,需逆转录酶的催化。其过程先以经剪切作用除去内含子的成熟mRNA为模板,合成RNA/DNA杂化双链,然后水解RNA链,再以剩下的DNA单链为模板合成DNA双链。多次复制后形成多个DNA双链,然后以这些DNA双链中的每双链的其中的单条(该条与原始病毒RNA链互补)为模板,复制出RNA(该RNA与原始病毒RNA相同,不考虑遗传变异)
艾滋病病毒(HIV)就是一种逆转录病毒.
转录的弱化作用机制
通过操纵子前导区内类似终止子的一段DNA序列(衰减子)实现的细菌辅助阻遏作用的一种精细调控。
它与阻遏同属转录水平调控,但与阻遏不同,弱化作用只使操纵子的转录开始后还没有进入第一个结构基因时便终止。
这种终止作用并不能使所有正在转录的mRNA都中途停止,而仅使部分中途停止。
转录的特性
RNA的转录过程可分为三个阶段,分别是:启动、延伸、终止。
1、启动
RNA聚合酶正确识别DNA模板链上的启动子并形成由酶、DNA和核苷三磷酸(NTP)构成的三元起始复合物,转录即自此开始。
2、延伸
σ亚基脱离酶分子,留下的核心酶与DNA的结合变松,因而较容易继续往前移动。核心酶无模板专一性,能转录模板上的任何顺序,包括在转录后加工时待切除的居间顺序。脱离核心酶的σ亚基还可与另外的核心酶结合,参与另一转录过程。
3、终止
转录的终止包括停止延伸及释放RNA聚合酶和合成的RNA。在原核生物基因或操纵子的末端通常有一段终止序列即终止子;RNA合成就在这里终止。原核细胞转录终止需要一种终止因子ρ(六个亚基构成的蛋白质)的帮助。真核生物DNA上也可能有转录终止的信号。
转录的机制
生物的遗传信息,一方面通过DNA的复制,一代一代地传递下去;另一方面在后代的个体发育中,它又以一定方式反映到蛋白质的分子结构上,导致后代表现出与亲代相似的性状。前者是遗传信息的传递过程,后者是遗传信息的表达过程。
1.遗传信息的转录 所谓“转录”是指遗传信息由DNA传递到mRNA上。遗传信息的转录过程是在RNA聚合酶的催化作用下进行的。
2.遗传信息的翻译 所谓“翻译”就是将mRNA上的遗传密码翻译为蛋白质的过程。在64个密码子中有61个是各种氨基酸的密码子。
3.遗传信息的传递方向。
转录作用的机理图示
基因过表达的基本原理是通过人工构建的方式在目的基因上游加入调控元件,使基因可以在人为控制的条件下实现大量转录和翻译,从而实现基因产物的过表达。
基因过表达的步骤是:
1,构建克隆。将目的基因连接在特定的载体上,载体种类依据表达系统差异而不同。在载体上一般含有增强基因转录的promoter,不同系统中采用的promoter完全不同。
2,将克隆导入表达细胞中。在大肠杆菌,酵母和哺乳动物细胞中,构建的外源质粒直接导入细胞即可,这个过程称为转化或转染。对于昆虫表达系统,构建的质粒还需要先转座成为杆状病毒基因组才能用于转染。
基因过表达的应用:大肠杆菌表达系统,酵母表达系统,昆虫表达系统,哺乳动物细胞表达系统和体外翻译系统(无细胞体系)。
现在人们常说的生物技术实际上就是现代生物技术。现代生物技术包括基因工程、蛋白质工程、细胞工程、酶工程和发酵工程等五大工程技术。其中基因工 程技术是现代生物技术的核心技术。基因工程的核心技术是DNA的重组技术,也就是基因克隆技术。既然基因工程这么重要,那么什么是基因工程呢?
基因工程是指在体外将核酸分子插入病毒、质粒或其它载体分子,构成遗传物质的新组合,并使之参入到原先没有这类分子的寄主细胞内,而能持续稳定地 繁殖。根据这个概念,人们可以从一个生物的基因中提取有用的基因片断,植入到另外一个生物体内,从而使该生物获得某些新的遗传性状。从而获得所需要的新的 生物的变种.运用基因工程可以加快生物的变异,并使生物的变异朝着有益于人类的方向发展.而且,基因工程是处在分子水平上的操作,因而可以跨越不同的物种 进行操作.大大改善了传统的只能同类生物杂交并且不能控制变异方向的方法.
例如,传统的水稻培养方法是让很多不同的水稻杂交,然后将种子都培养成水稻,再 从中选择优良的品种.但是这种方法不仅工作量大,而且效果也不是很好.根据DNA重组原理,有些隐性性状大约只有1/4的概率能表达出来.这样就做了大量 的无用功.但是利用基因工程,我们只需要从不同的水稻中提取所需要表达出来的性状的核苷酸组合,将其移植到另外的水稻上,就可以表达出来.这样做,大大节 省了工程的周期,也提高了基因性状表现的精确度.另外,不同种的生物一般是不能交配的.例如鱼和牛,就不能进行交配而生出下一代.但是利用基因工程,我们 可以把鱼的某些基因移植到牛的受精卵上,或者把牛的基因移植到鱼的受精卵上,加以培养,就可以产生既有牛的性状又有鱼的性状的新的物种.虽然基因工程有这 么多的好处,但是也不是说可以滥用的.因为每种生物经过适者生存的自然选择,都能适应所处的生存环境.如果移植了外来的基因,可能会打破其体内的细胞的平 衡,从而导致细胞的快速衰老甚至死亡.可见,基因工程要正确处理好细胞的相容性。
那么,基因工程都有那些应用呢?
一:在生产领域,人们可以利用基因技术,生产转基因食品.例如,科学家可以把某种肉猪体内控制肉的生长的基因植入鸡体内,从而让鸡也获得快速增肥 的能力.但是,转基因因为有高科技含量, 怕吃了转基因食品中的外源基因后会改变人的遗传性状,比如吃了转基因猪肉会变得好动,喝了转基因牛奶后易患恋乳症等等。华中农业大学的张启发院士认为:“ 转基因技术为作物改良提供了新手段,同时也带来了潜在的风险。基因技术本身能够进行精确的分析和评估,从而有效地规避风险。对转基因技术的风险评估应以传 统技术为参照。科学规范的管理可为转基因技术的利用提供安全保障。生命科学基础知识的科普和公众教育十分重 要。
二:军事上的应用.生物武器已经使用了很长的时间.细菌,毒气都令人为之色变.但是,现在传说中的基因武器却更加令人胆寒.基因武器只对具有某种 基因的人(例如某一种族)有杀伤力,而对其他种族的人毫无影响.这种武器的使用无疑会使遭受基因武器袭击的种族面临灭顶之灾。
三: 环境保护上,也可以应用基因武器.我们可以针对一些破坏生态平衡的动植物,研制出专门的基因药物,既能高效的杀死它们,又不会对其他生物造成影响.还能节 省成本.例如一直危害我国淡水区域的水葫芦,如果有一种基因产品能够高校杀灭的话,那每年就可以节省几十亿了。科学是一把双刃剑.基因工程也不例外.我们要发挥基因工程中能造福人类的部分,抑止它的害处.。
四,医疗方面,随着人类对基因研究的不断深入,发现许多疾病是由于基因结构与功能发生改变所引起的。科学家将不仅能发现有缺陷的基因,而且还能掌握如何进行对基 因诊断、修复、治疗和预防,这是生物技术发展的前沿。这项成果将给人类的健康和生活带来不可估量的利益。所谓基因治疗是指用基因工程的技术方法,将正常的基因转如病患者的细胞中,以取代病变基因,从而表达所缺乏的产物,或者通过关闭或降低异常表达的基因等途 径,达到治疗某些遗传病的目的。目前,已发现的遗传病有6500多种,其中由单基因缺陷引起的就有约3000多种。因此,遗传病是基因治疗的主要对象 。第一例基因治疗是美国在1990年进行的。当时,两个4岁和9岁的小女孩由于体内腺苷脱氨酶缺乏而患了严重的联合免疫缺陷症。科学家对她们进行了基因治疗 并取得了成功。这一开创性的工作标志着基因治疗已经从实验研究过渡到临床实验。1991年,我国首例B型血友病的基因治疗临床实验也获得了成功。
基因治疗的最新进展是即将用基因枪技术于基因治疗。其方法是将特定的DNA用改进的基因枪技术导入小鼠的肌肉、肝脏、脾、肠道和皮肤获得成功的表 达。这一成功预示着人们未来可能利用基因枪传送药物到人体内的特定部位,以取代传统的接种疫苗,并用基因枪技术来治疗遗传病。
目前,科学家们正在研究的是胎儿基因疗法。如果现在的实验疗效得到进一步确证的话,就有可能将胎儿基因疗法扩大到其它遗传病,以防止出生患遗传病症的新生儿,从而从根本上提高后代的健康水平。
五,基因工程药物研究,基因工程药物,是重组DNA的表达产物。广义的说,凡是在药物生产过程中涉及用基因工程的,都可以成为基因工程药物。在这方面的研究具有十分诱人的前景。
基因工程药物研究的开发重点是从蛋白质类药物,如胰岛素、人生长激素、促红细胞生成素等的分子蛋白质,转移到寻找较小分子蛋白质药物。这是因为蛋 白质的分子一般都比较大,不容易穿过细胞膜,因而影响其药理作用的发挥,而小分子药物在这方面就具有明显的优越性。另一方面对疾病的治疗思路也开阔了,从 单纯的用药发展到用基因工程技术或基因本身作为治疗手段。
现在,还有一个需要引起大家注意的问题,就是许多过去被征服的传染病,由于细菌产生了耐药性,又卷土重来。其中最值得引起注意的是结核病。据世界 卫生组织报道,现已出现全球肺结核病危机。本来即将被消灭的结核病又死灰复燃,而且出现了多种耐药结核病。据统计,全世界现有17.22亿人感染了结核病 菌,每年有900万新结核病人,约300万人死于结核病,相当于每10秒钟就有一人死于结核病。科学家还指出,在今后的一段时间里, 会有数以百计的感染细菌性疾病的人将无药可治,同时病毒性疾病日益曾多,防不胜防。不过与此同时,科学家们也探索了对付的办法,他们在人体、昆虫和植物种 子中找到一些小分子的抗微生物多肽,它们的分子量小于4000,仅有30多个氨基酸,具有强烈的广普杀伤病原微生物的活力,对细菌、病菌、真菌等病原微生 物能产生较强的杀伤作用,有可能成为新一代的“超级抗生素”。除了用它来开发新的抗生素外,这类小分子多肽还可以在农业上用于培育抗病作物的新品种。
六,加快农作物新品种的培育,科学家们在利用基因工程技术改良农作物方面已取得重大进展,一场新的绿色革命近在眼前。这场新的绿色革命的一个显著特点就是生物技术、农业、食品和医药行业将融合到一起。
本世纪五、六十年代,由于杂交品种推广、化肥使用量增加以及灌溉面积的扩大,农作物产量成倍提高,这就是大家所说的“绿色革命”。但一些研究人员认为,这些方法目前已很难再使农作物产量有进一步的大幅度提高。
基因技术的突破使科学家们得以用传统育种专家难以想象的方式改良农作物。例如,基因技术可以使农作物自己释放出杀虫剂,可以使农作物种植在旱地或 盐碱地上,或者生产出营养更丰富的食品。科学家们还在开发可以生产出能够防病的疫苗和食品的农作物。<BR> 基因技术也使开发农作物新品种的时间大为缩短。利用传统的育种方法,需要七、八年时间才能培育出一个新的植物品种,基因工程技术使研究人员可以将任何一种 基因注入到一种植物中,从而培育出一种全新的农作物品种,时间则缩短一半。
虽然第一批基因工程农作物品种5年前才开始上市,但今年美国种植的玉米、大豆和棉花中的一半将使用利用基因工程培育的种子。据估计,今后5年内, 美国基因工程农产品和食品的市场规模将从今年的40亿美元扩大到200亿美元,20年后达到750亿美元。有的专家预计,“到下世纪初,很可能美国的每一 种食品中都含有一点基因工程的成分。
尽管还有不少人、特别是欧洲国家消费者对转基因农产品心存疑虑,但是专家们指出,利用基因工程改良农作物已势在必行。这首先是由于全球人口的压力 不断增加。专家们估计,今后40年内,全球的人口将比目前增加一半,为此,粮食产量需增加75%。另外,人口的老龄化对医疗系统的压力不断增加,开发可以 增强人体健康的食品十分必要。
加快农作物新品种的培育也是第三世界发展中国家发展生物技术的一个共同目标,我国的农业生物技术的研究与应用已经广泛开展,并已取得显著效益。
七,分子进化工程的研究,分子进化工程是继蛋白质工程之后的第三代基因工程。它通过在试管里对以核酸为主的多分子体系施以选择的压力,模拟自然中生物进化历程,以达到创造新基因、新蛋白质的目的。
这需要三个步骤,即扩增、突变、和选择。扩增是使所提取的遗传信息DNA片段分子获得大量的拷贝;突变是在基因水平上施加压力,使DNA片段上的 碱基发生变异,这种变异为选择和进化提供原料;选择是在表型水平上通过适者生存,不适者淘汰的方式固定变异。这三个过程紧密相连缺一不 可。
现在,科学家已应用此方法,通过试管里的定向进化,获得了能抑制凝血酶活性的DNA分子,这类DNA具有抗凝血作用,它有可能代替溶解血栓的蛋白质药物,来治疗心肌梗塞、脑血栓等疾病。
参考资料
天涯社区
.天涯社区[引用时间2017-12-30]转录作用的机理有哪些
在RNA聚合酶的催化下,以DNA为模板合成mRNA的过程称为转录。在双链DNA中,作为转录模板的链称为模板链或反义链;而不作为转录模板的链称为编码链或有义链,编码链与模板链互补,它与转录产物的差异仅在于DNA中的胸腺嘧啶(T)变为RNA中的尿嘧啶(U)。
在含许多基因的DNA双链中,每个基因的模板链并不总是在同一条链上,亦即可作为某些基因模板链的一条链,同时也可以是另外一些基因的编码链。
如细菌基因的负调控机制是当一种阻遏蛋白结合在受调控的基因上时,基因不表达;而从靶基因上去除阻遏蛋白后,RNA聚合酶识别受调控基因的启动子,使基因得以表达,这是正调控。这种阻遏蛋白是反式作用因子。